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CHARACTERIZING AN EFFECTIVE HOSPITAL ADMISSIONS SCHEDULING AND
CONTROL MANAGEMENT SYSTEM: A GENETIC ALGORITHM APPROACH

Jonathan E. Helm
Marcial Lapp

Brendan D. See

Department of Industrial & Operations Engineering
University of Michigan

1205 Beal Avenue, Ann Arbor, MI 48109, USA

ABSTRACT

Proper management of hospital inpatient admissions involves a large number of decisions that have
complex and uncertain consequences for hospital resource utilization and patient flow. Further,
inpatient admissions has a significant impact on the hospital’s profitability, access, and quality of
care. Making effective decisions to drive high quality, efficient hospital behavior is difficult, if not
impossible, without the aid of sophisticated decision support. Hancock and Walter (1983) developed
such a management system with documented implementation success, but for each hospital the
system parameters are “optimized” manually. We present a framework for valuing instances of this
management system via simulation and optimizing the system parameters using a genetic algorithm
based search. This approach reduces the manual overhead in designing a hospital management system
and enables the creation of Pareto efficiency curves to better inform management of the trade-offs
between critical hospital metrics when designing a new control system.

1 INTRODUCTION

Inpatient admissions and bed management is a core value engine of the hospital. Effective management
of hospital admissions is critical to the overall cost, quality of care, and patient access. Due to the
inherent complexity of the network of resources that encompass hospital care delivery and the dynamic
and stochastic nature of patient trajectories within the hospital, effective systems management is difficult
without the aid of predictive stochastic models. In the absence of such systems to manage bed and
care resources, hospital bed occupancy levels become statistically “out of control,” as in the census
plot from a partner hospital shown in Figure 1.
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Figure 1: Plot of partner hospital census over the course of one year.

This census variability causes emergency department congestion, elective surgical and medical
cancelations, radiology backlogs, strains on nurse and ancillary staff, and intensive care unit (ICU)
overcrowding. System-wide congestion caused by high census variability results in compromised
quality of care, emergency patient diversions and blockages for lack of beds, increased patient length
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of stay (LOS), and significant excess costs (Keehan, Sisko, and Truffer 2007), (Sprivulis et al. 2006),
(Harrison, Shafer, and Mackay 2005), and (Proudlove, Gordon, and Boaden 2003).

While a significant amount of research focuses on operating room scheduling or emergency
department management, relatively little research examines how the decision to schedule and/or
admit a patient affects the downstream hospital resources required to care for that patient over the
entire course of their hospitalization. Ignoring the effect of an elective admission on the entire hospital
system can contribute significantly to the unstable hospital workloads seen in Figure 1, which leads
to the host of problems described above.

Previous research has established effective admission and bed management systems using a variety
of modeling techniques. Gallivan and Utley (2005) proposed an integer programming framework for
stabilizing hospital workloads. This framework, however, was developed for specialized “elective-
only” hospitals in the UK and considers only a single downstream ward or unit for the patients to
enter after surgery. This is not the case in most hospitals, in which multiple types of wards serve
many different kinds of patients. In addition, there is interaction between wards when patients are
transferred due to their dynamically changing condition. In fact, Gupta (2007) states one of the main
challenges of modeling surgical admissions is to consider multiple downstream resources over time. In
a similar vein, Isken, Ward, and Littig (2010) developed an optimization model for obstetrics, where
the decisions include scheduling of c-sections and inductions. Obstetrics generally function somewhat
independently of the rest of the hospital, however, and thus constitute a more homogeneous resource.
Chow et al. (2008) developed an optimization to reduce congestion in surgical wards, but considers a
linear path in which a patient enters a ward and then is discharged with no interaction between wards.

In other research, simulation has been used effectively to account for the complexities of an
integrated network of care resources that must serve patients whose needs change dynamically over
time. Harper (2002) and Pitt (1997) developed discrete-event simulation frameworks for modeling
patient flow and its effect on hospital resources. However, these models are quite general and do not
directly constitute decision support for operational management of inpatient admissions.

The Admission Scheduling and Control System developed by (Hancock and Walter 1979) and
(Hancock and Walter 1983) and analyzed by (Lowery 1996) is extended in this paper. This system
models the hospital as a complex queueing network which encompasses stochastic patient trajec-
tories and the network of resources required to serve patients’ dynamically changing needs. The
controls on the system are (i) the elective admission schedule, (ii) the census level at which to cancel
elective patients, and (iii) the census level at which to call in extra patients off a “callin queue”.
Hancock and Walter (1983) claim documented savings between $43,000 and $750,000 per year as
well as large reductions in surgical cancelations and emergency turnaways based on prior imple-
mentations. While this approach to inpatient admissions is effective from a practical standpoint and
includes critical features of hospital systems that are omitted in other optimization-based models, it
appears that the determination of scheduling parameters is done manually. In this paper, we attempt to
develop an optimization framework for automatically generating effective system parameters for such
an admission system. To our knowledge, this is the first attempt to add an optimization component to
this fully specified control problem of managing admissions to a hospital system, where the system
is specified by a network of care resources and complete stochastic patient trajectories through the
network.

2 METHODS

We model a partner hospital as a proof of concept for our proposed framework for generating an effective
admission scheduling and control system. Using this hospital as a case study, we demonstrate that our
optimization framework improves upon the existing scheduling and control system. In addition, we
demonstrate our framework’s usefulness in generating Pareto efficiency curves to guide administrator
decision-making.

2.1 Input Modeling

Our simulation uses input data from a mid-size community hospital. To model this hospital, a full
year’s worth of data is used with identifying patient information removed and replaced by admission
numbers. Given that our system is modeling a hospital based on its daily (midnight) census, we only
consider patients that stayed in the hospital for at least one night. In 2008, 14,827 patients stayed at
least one night. Out of these overnight patients, 7,016 were emergency patients while the remaining
7,811 were scheduled patients.
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Table 1: Transition probabilities for non-emergency and emergency patients.

Non-Emergency Emergency
To: – A B C – A B C

From A 0.846 0.116 0.001 0.037 0.739 0.174 0.008 0.079
From B 0.847 0.004 0.147 0.002 0.699 0.026 0.271 0.004
From C 0.371 0.528 0.069 0.031 0.429 0.543 0.014 0.044

Table 2: Average and standard deviation of the length of stay (in hours) for non-emergency and emergency patients.

Non-Emergency Emergency
Ward µ σ µ σ

A 27.13 12.87 118.36 131.12
B 23.47 9.68 56.31 65.82
C 21.99 8.20 49.66 123.28

The input data contained the 14,827 patients’ movements throughout the hospital. The patients
transferred within the hospital 20,462 times, including the initial ‘transfer’ into the patient’s first
ward. The transfers within the hospital had been grouped into 23 ward codes by the partner hospital;
to avoid unnecessary complexity we aggregate similar wards, where three aggregate wards (which
make up 8 of the 23 wards) constitute the majority of transfers (the remaining 15 wards were rarely
used by the patients). The first aggregate ward (“Ward A”) is a surgical ward. The second aggregate
ward (“Ward B”) is a medicinal ward. The third aggregate ward (“Ward C”) consists of the critical
care unit (CCU) and intensive care unit (ICU) of the hospital. This aggregation works well because
the statistical properties of patients at the sub-ward level do not differ significantly and the increased
sample size for each ward provides better statistical estimates. Since the purpose of our approach is to
evaluate system level properties, this loss of granularity has little effect on the system level outcome
as noted in Lowery (1996).

2.1.1 Length of Stay and Transition Probabilities

For both emergency and non-emergency patients at each aggregate ward, one-step ward transition
probabilities and length of stay parameters are computed. Table 1 gives the one-step transition
probabilities for non-emergency and emergency patients. Here, “–” implies a discharged patient.
Transitions from a ward back to itself (e.g. a transfer from Ward A to Ward A) may occur for
multiple reasons. First, a patient’s condition may change, which results in the patient’s information
(and possibly location within a given ward) being updated. Second, a patient may transfer from a
ward in Ward A to another ward which also happens to be in Ward A – thus, even though the patient
transfers from one ward to another, our method of aggregating the wards views such movements as
internal transfers. We incorporate the transition probabilities into the model as a Markov chain – that
is, the probability distribution of a patient’s next location solely depends on their current location.

The length of stay data at each aggregate ward is calculated for both types of patients. The
mean µ and standard deviation σ at individual wards are weighted appropriately in order to find
aggregate versions of these parameters for non-emergency and emergency patients, which are listed
in Table 2. We then use these values to find the required parameters for a log-normal distribu-
tion (“location” and “scale”) for each patient type at each ward. The use of a log-normal distri-
bution to model patients’ time spent in a given ward is widely used in the literature (see, e.g.,
Marshall, Vasilakis, and El-Darzi (2005)). Further, the appropriateness of using a log-normal distri-
bution is evident from multiple probability plots; the plot for one length of stay parameter is given in
Figure 2.

2.1.2 Arrival of Emergency Patients

To properly model arrivals, one must consider that emergency patients may (i) arrive at Wards A,
B, and C according to a distribution that differs from their intra-hospital transfer rates, and (ii) do
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Figure 2: Log-normal probability plot of length of stay parameter.

Table 3: Average number of arrivals, separated by ward and time of day.

Non-Emergency Emergency
Ward: A B C A B C

AM PM AM PM AM PM AM PM AM PM AM PM
M 8.44 1.38 2.04 1.94 0.35 0.13 1.94 3.17 2.19 2.48 1.15 1.63
Tu 8.45 1.45 6.15 2.19 0.25 0.11 2.03 2.81 1.89 2.53 1.02 1.60
W 7.85 1.32 5.15 1.75 0.25 0.09 1.96 2.87 1.43 2.00 0.92 1.60
Th 9.42 1.18 4.04 1.62 0.17 0.06 1.98 2.50 1.67 2.77 1.23 1.27
F 7.12 0.73 3.19 2.02 0.25 0.08 1.94 3.48 1.67 2.63 1.00 1.44
Sa 0.17 0.12 1.00 0.94 0.02 0.10 1.81 3.48 1.67 2.63 1.00 1.44
Su 1.13 4.87 0.87 1.38 0.12 0.08 1.58 2.17 1.65 2.23 1.12 1.40

not arrive uniformly throughout the week. Consequently, we compute these values as follows. First,
we group emergency patients based on the first aggregate ward they visit (i.e. Ward A, B, or C).
Many patients arrive first to a central triage, and then transfer within the hospital to one of the 23
wards. For each patient, we follow their transfers until they first enter one of the wards aggregated
into Ward A, B, or C. For each of the three wards, we determine how many emergency patients are
admitted between midnight and 2 p.m. (which we refer to as “AM”) and 2 p.m and 11:59 p.m. (“PM”)
on each day of the year. The grouping of emergency patients into AM and PM arrivals is needed
to accurately model the system: AM arrivals generally arrive before scheduling decisions are made
and thus can be accounted for in those decisions, while PM arrivals enter the hospital after most
scheduled patients have been admitted for the day. Further, it is well-known that emergency patients
do not arrive uniformly over the course of the day, which leads to increased queueing. The emergency
patients in our study generally followed the daily arrival pattern found by previous studies – refer to
Draeger (1992) and (See et al. 2009) for empirical distributions.

After determining how many emergency patients arrive at each ward in the AM and PM time
blocks for each day of the year, we find the mean and standard deviation of patients arriving at each
ward in the AM and PM blocks by day of week. These values are summarized in Table 3. The arrival
pattern of non-emergency patients is also of interest in order to evaluate the current system. As one
would generally expect, emergency patients do not arrive uniformly over the course of the week, in
addition to the heterogeneity over the course of a day. Subsequently, we use the mean number of
arrivals (grouped by ward, day of week, and AM/PM) in order to model emergency arrivals using a
Poisson distribution.

These calculations – the one-step transition probabilities and length of stay for both emergency
and non-emergency patients at Wards A, B, and C, as well as the patients’ arrival locations, grouped
by day of week and time of day – all serve as inputs to our simulation, which we describe in the next
subsection.

2.2 Model Description

Our basic simulation model is similar to that described in the works of Hancock and Walter (1979),
Hancock and Walter (1983), and Lowery (1996), which can be referred to for a more detailed de-
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scription. As a brief overview, we aggregate our partner hospital’s wards into 3 primary wards: Ward
A (Surgery), Ward B (Medicine), and Ward C (Critical Care). For each patient type, a flow path is
developed based on historical transfer probabilities between wards, as mentioned in §2.1.1. Figure 3
represents the flow paths of different patients in our system. In this system, patients arrive according
to their type – Poisson arrivals for emergencies, controlled arrivals for scheduled patients – receive
the first segment of treatment and then are either discharged or transferred to another ward for a
subsequent treatment segment.

Figure 3: Map of patient flow trajectories.

One complicating feature of hospitals is that many resources within the network are flexible. For
example, a surgery patient who exits surgery to find no surgery bed available can occupy a bed in the
medicine ward. This is a critical feature of hospital systems that makes it difficult to properly model
the hospital system using an optimization framework. In the simulation, alternate routing rules for
when a ward is full are encoded in the model based on hospital practice.

Since we intend to use this simulation model for optimization of management system parameters
where the simulation will be run thousands of times, one requirement is that a given run of the
simulation should complete quickly. Keeping this in mind, the construction of the simulation differs
from many discrete-event simulations. Instead of simulating each individual patient arriving to the
hospital, we instead simulate and manage groups of patients at once. To do so, we break each day
into sequential subcomponents based on the order and timing of the system-level decisions that must
be made. Anything that happens in between decision epochs is modeled as a single event. For
example, we break the emergencies into AM and PM emergencies. AM emergencies are patients that
are able to reach a bed before scheduled and callin patients can fill those beds (i.e. before 2 p.m.).
PM emergencies arrive after the cancel and callin decisions have been made and are thus subject to
blockage from the patients admitted that day. We model the arrivals of each group as a single event.
This approach highlights the fact that we are modeling system level outcomes and are only concerned
with whether or not a patient eventually reaches a bed or is turned away from the hospital in a given
day, ignoring the logistics of how that patient reaches the bed.

2.3 Model Control Parameters

We use the same control parameters defined in Hancock and Walter (1983) and Lowery (1996), as our
goal is to show that optimization methods can be applied to determine these control parameters rather
than designing the scheduling and control system manually. The three parameter types we consider
are (i) the elective admission schedule by day of week, (ii) the cancelation level by day of week – the
number of empty beds to leave open for evening emergencies, and (iii) the callin level by day of week
– the number of empty beds below which we call patients in from the callin queue. Examples of the
system controls are shown in Table 4, where each ward that has scheduled patients receives its own
set of controls. Setting these 42 control parameters will specify the admission scheduling and control
system for this hospital, which could then be implemented as in Hancock and Walter (1983). The
goal of this research is to find the controls that will allow the hospital to operate at high efficiency,
which means operating at high utilization with limits on the number of cancelations and emergency
patient blockages.

The first row of parameters in Table 4 tells the system how many elective patients to admit to each
ward by day of week (“schedule”). For example, on Monday 10 patients should be scheduled for
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Table 4: Sample choices of the decision variables for Ward A and Ward B.

Ward A (Surgery) Ward B (Medicine)
Su M Tu W Th F Sa Su M Tu W Th F Sa

Schedule 6 10 8 7 9 9 2 5 9 8 8 9 7 2
Cancel 3 4 4 5 3 2 1 3 5 6 5 4 3 1
Callin 14 12 9 9 9 9 16 15 11 10 10 8 9 14

Ward A and 9 elective patients should be scheduled to enter Ward B. Likewise, the “cancel” decision
variable means that if fewer than 4 empty beds remain on a given Monday in Ward A, surgical
scheduled patients that would use those beds should be canceled. Finally, the “callin” parameter
means that if on a given Wednesday there are only 7 beds full in Ward B after all scheduled patients
have been admitted, then the hospital should call in 3 extra patients off the callin queue until 10 beds
are filled. This schedule is repeated in the same manner every week, as a repeatable weekly schedule
is a prerequisite for the scheduling and control system described in Hancock and Walter (1983), and
Lowery (1996).

2.4 Model Validation & Verification

In order to verify and validate the accuracy of our simulation model, we use strategies suggested
by Sargent (2005). The verification of the simulation model is done through a series of white-box
and black-box testing schemes. In addition to verifying the correct operation of each of the modules
illustrated in Figure (3), we also generate patient transition output for each ward for every turn of the
simulation clock. That is, using a manual process, we are able to verify that the correct number of
patients are flowing through the system on a daily basis, ensuring that our simulation is performing
correctly.

We validate our model of the system by comparing it against actual “real-world” hospital operations:
given a year’s worth of hospital admissions data, we are able to extract the scheduling policy that was
used by the hospital and subsequently implement this policy in our model. Comparing the key features
of the system (average daily census by day of week, volume of emergency and scheduled patients,
and so forth) we find that our simulation closely mimics the actual hospital operations, validating that
it indeed functions correctly and produces the correct output.

2.5 Evaluating a Scheduling and Control System

To determine a control parameter set that specifies an effective scheduling and control system we
need a mechanism for comparing different systems. To do so, we develop an objective function
that embodies the goal of achieving high utilization with limits on the number of cancelations and
emergency blockages. The following definitions enable us to formalize an objective function for
comparing hospital admission scheduling and control systems.

Xt(Θ) Random variable denoting the number of cancelations on day t ∈ T = {Su,M,T,W,R,F,Sa}
for a given control parameter set Θ

Yt(Θ) Random variable for emergency patient blockages on day t given controls Θ
Zt(Θ) Random variable for the number of empty beds at midnight on day t given controls Θ
c Cancelation cost
b Blockage cost for emergency patients
h Cost of an empty bed

Samples from Xt , Yt , and Zt are taken daily from the simulation output. While it is possible to
further differentiate costs by patient type we do not do so for several reasons. First, the costs are
estimates and such differentiation can further complicate the system’s functioning. In addition, this
system is a high level management system, so it does not tell the hospital which patients to cancel,
only how many to cancel, so the type of patient canceled is subject to doctor and administrator
decision-making and cannot be determined within the simulation. Using the following linear cost
function we can determine the value, V (Θ), of a given set of control parameters, Θ, that define a
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scheduling and control system:

V (Θ) = ∑
t∈T

[

cXt(Θ)+bYt(Θ)+hZt(Θ)
]

.

Note that because we consider scheduling and control parameters that repeat weekly, we are
considering a seven day cyclostationary system – if the simulation is run for T days, it generates T/7
observations (though certainly not independent) of Xt , Yt , and Zt for each day of the week. From
these observations, an estimator for E[V (Θ)] can be obtained. It is this estimator, V̂ (Θ), that is used
to compare systems using a genetic algorithm.

While the cost parameters of the objective function cannot be precisely quantified, these parameters
can be imputed from hospital management goals. For example, a management goal of “no more than 3
cancelations a month and 2 emergency blockages per month” can be approximately translated into cost
parameters that achieve this goal – though this translation is not necessarily unique. By accumulating
the objective function over simulation iterations it is possible to estimate a particular scheduling and
control system’s expected value and thereby possible to compare different scheduling and control
systems. This comparison is used in our genetic algorithm to rank members of the population.

2.6 Genetic Algorithm

A genetic algorithm (Davis and Mitchell 1991) is an optimization technique often applied to difficult
optimization problems, especially when the state-space of possible solutions is incredibly large and
the objective function is non-linear. In our particular problem, the objective is actually the result of
a complicated simulation, making optimization approaches rather difficult.

In this particular problem, the input to the genetic algorithm consists of a seven-day hospital
scheduling and control policy. In addition, each of the two major wards of the hospital has its own
scheduling and control parameters. Thus to characterize the management system for this hospital,
our algorithm must determine 42 decision variables that specify the management rules for scheduled
patients, callin patients, and cancelations.

To more effectively implement the genetic algorithm, we encode each of the septuplets for each
of the wards into a binary bit string. The size of the bit string is determined by the maximum capacity
of each ward. For example, the maximum capacity of Ward A is 97 overnight beds, so each Ward A
parameter is encoded using a 7-bit binary number.

2.6.1 Implementation

As taken from the general literature, the steps for implementing a typical genetic algorithm are as
follows:

1. Generate a population of possible solutions to the problem.
2. Determine the objective function value for each member in the population.
3. Pick two population members, generally ones with highly-ranked objective function values,

and combine them to create an offspring (“cross-over”).
4. Randomly change genes in the offspring (“mutation”).
5. Introduce the offspring into the population and repeat the process.

Using a genetic algorithm to determine the optimal scheduling policy followed the implementation
seen in Figure 4.

While a genetic algorithm is by no means guaranteed to provide an optimal solution, it does
offer a systematic way to find a better objective function value through an iterative process. For our
application, the genetic algorithm needs to be augmented to respect general hospital restrictions. For
example, in many hospital systems it is generally the case that patients are not scheduled to arrive at
the end of the week because of reduced resource levels on the weekends (Bell and Redelmeier 2001).
To respect this constraint, we add to the genetic algorithm restrictions on mutations such that offspring
scheduling policies are rejected if they admit too many patients on the weekend. In the case of our
partner hospital, we restrict scheduled patients according to the constraints in Table 5. We present
the results of the genetic algorithm runs in §3.
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Figure 4: Implementation of the genetic algorithm.

Table 5: Patient scheduling constraints due to reduced weekend resource levels.

Saturday Sunday
Ward A 0 ≤ 6
Ward B ≤ 2 ≤ 2

3 RESULTS

To test our optimization framework, we develop a simulation model using the C++ programming
language that reflects the partner hospital described in §2 using the historical data. This simulation
model serves as the basis for our genetic algorithm optimization. In this section we first describe the
kind of output that was generated and how it was used. Next, we present a comparison of the current
system with the system generated from the genetic algorithm solution for a specific cost parameter
set. Then we solve the same system under varying parameter sets to generate Pareto efficiency curves
that can help guide hospital administrator decision-making rather than forcing the administrator to
“choose” a set of costs upon which to optimize. These trade-off curves can be particularly useful for
hospital management decision support and at the same time would be quite difficult (if not impossible)
to generate manually. This justifies the use of optimization methodologies to solve for effective system
parameter sets.

Each hospital simulation is run for 700 days and includes a 34 day warm-up period. This length of
time reflects roughly a two-year time frame during which the hospital fluctuations have stabilized. A
single replication with 700 days of simulation reduces the error of the objective function to 0.33 at a
97.5% confidence level for a typical objective function whose value ranges between $800 and $1,200.
Likewise, at a 97.5% confidence level, the error level for the individual objectives (cancelation, turn
away, and empty bed costs) is 0.17, 0.35, and 0.04, respectively. These error values indicate that a
700-day horizon is sufficient to attain the steady state of the hospital system.

It should be noted that each run of the simulation, including 734 days of operation, completed in 8
seconds on an Intel Core 2 (Duo) E8500 processor running at 3.06Ghz. In addition, the simulation and
genetic algorithm execute sequentially and thus do not take advantage of multiple cores/processors.
Given the 8 second run-time of a complete simulation, a genetic algorithm run of 3000 iterations
completes in just under 7 hours of run-time. It was deemed sufficient to run the algorithm for 3000
iterations at the time of the experiments due to the available machine time and overall processing
time required. Further motivation for increased run-time and efficiency are addressed in §4.

3.1 Model Output

3.1.1 Case Study System Comparison

The original hospital suffered from a significant number of cancelations and emergency blockages each
month. The goal in implementing an improved inpatient scheduling and control system is to stabilize
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the hospital occupancy and enable the hospital to function at the same utilization or better with fewer
cancelations and blockages. In particular, the goal is to reduce average cancelations and blockages
each to fewer than 2 per month. To achieve this goal, different objective function cost parameter sets
were tested. Eventually, the parameter set P = {h = 1.5,c = 34,b = 45}, was found to achieve the
stated goal. The results of the genetic algorithm under the cost parameters P are presented in this section.
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Constrained Optimization Mgmt. Canceled Blocked Avg.
System per mo. per mo. Util.
Current 7.6 8.1 80%
GA Solution 1.5 1.9 80%

Figure 5: Current system vs. genetic algorithm solution (h = 1.5, c = 34, b = 45).

Figure 5 presents a comparison of the simulation results of the current system versus the optimized
system. While the cancelations and blockages in the current system spike in the middle of the week
(a common occurrence in most hospitals due to uneven scheduling practices), this peak is greatly
reduced in the optimized system due to a smoothing of the census across the week. The current
system also experiences over 15 cancelations and blockages each month on average, compared with
fewer than four per month on average in the optimized system. This is accomplished while still
maintaining 80% average utilization (occupancy), which demonstrates the importance of using a
management system – improved control systems enable a hospital to significantly improve one set
of metrics without negatively impacting a competing metric. In §3.1.2 we will demonstrate how our
optimization framework can be used to press the boundaries of competing metrics by generating a
Pareto efficiency curve.

3.1.2 Scheduling and Control Pareto Curves

When working with hospitals to design an effective management system it is important to provide
the decision makers with as much relevant information as possible. Optimizing to a single objective
function as done in §3.1.1 can be informative, but it forces hospital management to identify various
costs that cannot be precisely defined. Another approach would be to obtain quantifiable performance
goals from the hospital – such as the goal of fewer than two cancelations and two emergency blockages
per month with 80% occupancy level or better – and search for a parameter set that achieves these goals.
Unfortunately, this process again becomes quite manual and the goals may not even be possible. The
approach defined in this section mitigates these difficulties while providing the most information and
decision-making flexibility to hospital management by generating Pareto efficiency curves between
key system metrics.

By generating Pareto efficiency curves, hospital management can decide what level of service they
are willing to accept to achieve a given level of utilization (occupancy) – see Figure 6(a). Creating this
curve avoids the difficulties and inaccuracies of estimating specific cost parameters. It also avoids the
need to manually search for cost parameters that reflect quantifiable hospital goals by presenting the
hospital with possible options and their trade-offs, and allowing management to choose the preferred
level for their hospital. Finally, it avoids the situation where management may request an infeasible
goal – any point that lies outside the curve is infeasible and need not be considered.

Figure 6 represents the two key trade-offs that are considered in the scheduling and control system
analyzed in this paper. A sample of parameter iterates for generating each curve is shown in Table 6.
Figure 6(a) represents the trade-off between high utilization (average daily census/occupancy) and
congestion (cancelations and blockages). This curve was created by fixing the empty bed cost and
iterating over congestion values, where congestion = cancelations + blockages. For each parameter
set, the genetic algorithm is used to determine effective scheduling and control system parameters.
Notice that the current system lies well within the Pareto efficiency curve, and thus can improve both
utilization and congestion simultaneously. This is typically the case in most hospitals that are run
without a sophisticated management system.
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(a) Plot of utilization vs. congestion for GA solutions
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(b) Plot of cancelations vs. blockages at 80% occupancy

Figure 6: Pareto efficiency curves based on GA solutions – obtained by varying cost parameters.

Table 6: Sample of parameter sets used to generate Pareto efficiency curves

Congestion vs. Utilization Cancelation vs. Blockage (∼ 80% Util.)
Cost Run 1 Run 2 Run 3 Run 4 . . . Run 1 Run 2 Run 3 Run 4 . . .

Empty Bed (h) 1 1 1 1 . . . 1.4 1.6875 1.875 2.0625 . . .
Cancelation (c) 0.5 5 10 15 . . . 30 30 30 30 . . .
Turnaway (b) 0.5 5 10 15 . . . 30 37.5 45 52.5 . . .

Figure 6(b) represents the trade-off between cancelations and emergency patient blockages at a
utilization of around 80%, and is generated by maintaining a fixed ratio of congestion cost to utilization
cost and varying the ratio of cancelation cost versus the emergency blockage cost. By maintaining a
larger safety stock of empty beds through a higher cancelation level, one can reduce the amount of
emergency patient blockage. For hospital management to understand the trade-offs and identify the
appropriate “safety stock” of empty beds for their hospital, the trade-off curve between cancelations
and blockages can be generated for a given level of utilization. In this case, the current system lies so
far inside the Pareto curve that it cannot be shown on the graph, signifying an opportunity to improve
both cancelations and blockages simultaneously.

By generating these trade-off curves sequentially it is possible to more precisely define the kind of
hospital management would like to run. First, one can generate the Pareto curve between utilization
and congestion. Once a utilization and congestion level is chosen, it is possible to generate the second
efficiency curve between cancelations and blockages at approximately the chosen level of utilization
to determine the desired safety stock of empty beds. The average utilization outcome is approximate
because one does not choose the utilization level; however one can fix the cost ratios that generated
the chosen utilization in the first step to achieve a level close to the desired utilization.

4 DISCUSSION

In this paper, we present a framework that can successfully be used to generate improved scheduling
and control policies for hospital systems. Due to the inherent complexity in the overall hospital
admissions and scheduling process, simulation is used to determine the effects of such scheduling
policies. In combination with a genetic algorithm, we are able to illustrate significant improvements
in terms of reduced cancelations and blockages while maintaining high bed utilization for a partner
hospital. It should be noted that our simulation models the steady state behavior of a hospital under
“normal” operation. In reality, the hospital will deviate from this steady state over the course of the
year, however these deviations often occur around holidays and thus are predictable. A complete
management system should include a plan for transitioning into and out of holiday periods. This can
be done with modifications to our steady state simulation and represents an important area for future
work. Additionally, underlying changes in the hospital system dynamics can be tracked via control
chart and major changes can be addressed by resimulating to identify the new control parameters.

This optimization framework also facilitates the generation of Pareto efficiency curves as a means of
presenting the trade-offs between critical metrics to hospital management. Each point on the efficiency
curve represents a different instance of the management system, so hospital administrators can choose
the points on the efficiency curves that meet their management objectives. This data point can then be
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translated directly into control system parameters. This represents a significant improvement in the
system design process, allowing hospital management more flexibility to make the right decision for
their hospital. This is made possible because the genetic algorithm is able to automate the generation
of efficient management systems, eliminating the need to “optimize” manually.

While genetic algorithms are useful in finding good solutions, they are not guaranteed to return
the optimal solution. Due to recent advances in simulation-based optimization approaches, finding
the optimal solution even for very large state-space problems has become manageable. One possible
extension of our work is to replace the genetic algorithm with an approach such as simulation-based
approximate dynamic programming (Si, Barto, Powell, and Wunsch 2004). This strategy has the
potential to produce a better solution in less time and could be compared with the genetic algorithm
approach presented here.
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